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Over the past decades, the field of machine learning (ML) has made great strides in medicine. 
Despite the number of ML-inspired publications in the clinical arena, the results and implica-
tions are not readily accepted at the bedside. Although ML is very powerful in deciphering hid-
den patterns in complex critical care and emergency medicine data, various factors including 
data, feature generation, model design, performance assessment, and limited implementation 
could affect the utility of the research. In this short review, a series of current challenges of 
adopting ML models to clinical research will be discussed.
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What is already known
Machine learning is a powerful tool to handle complex datasets and could serve 
as a promising research methodology to improve healthcare outcomes in criti-
cal care and emergency medicine.

What is new in the current study
Various challenges and pitfalls should be considered in conducting clinical re-
search using machine learning.
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INTRODUCTION	

Over the past decades, the field of machine learning (ML) has 
made great strides in medicine. The greater availability of large 
datasets—supported by lower data storage fees and the advent of 
cloud computing—has provided a rich source of information that 
can be mined for ML algorithms [1]. Furthermore, enhanced com-
puting power has accelerated the development of ML algorithms 
that can process complex, heterogeneous datasets involving im-
aging data, electronic health records, and waveforms [2]. The dra-
matic evolution of ML techniques has inspired researchers to build 
numerous prototype models for prediction, diagnosis, and prog-
nostication. A number of these models performed equal or better 
in prediction and diagnosis than existing conventional statistics-
based solutions. Various ML models, for example, predicted criti-
cal care outcomes—e.g., emergency department (ED) to intensive 
care unit (ICU) transfer and in-hospital mortality—more accurately 
than existing screening tools, such as the Modified Early Warning 
Score, the National Early Warning Score, and the Sequential Or-
gan Failure Assessment [3,4]. In radiology, ML-based radiomics 
models performed better than radiologists, especially in detecting 
subtle changes indescribable to the naked eye [5–7].
  Nonetheless, several challenges must be overcome before ML 
algorithms can be adapted to the clinical workflow of the ICU or 
ED (Fig. 1). In this review, we outline these challenges—both in 
developing and applying models for critical care medicine—and 
offer potential solutions.

CRITICAL CARE DATA 

The extensive and granular datasets available in critical care med-
icine are promising resources for developing ML models. It is es-
pecially true when the data contain a lot of noise from the envi-

ronment, such as raw vital sign data acquired from the ED. How-
ever, several challenges remain in data standardization and pre-
processing.
  Building a reliable ML model requires a highly structured, large, 
and multicenter dataset that allows for proper model training as 
well as internal and external validation. But obtaining such a da-
taset is no easy task. Electronic health records contain informa-
tion collected as part of the workflow and are thus fraught with 
errors such as mislabeling and omission, and variation in intra-
hospital and interhospital reporting of clinical data creates addi-
tional challenges in data mining. 
  Thankfully, a number of efforts are underway to standardize 
data formatting. For example, Fast Healthcare Interoperability 
Resources (FHIR) is a preformatted healthcare database that ana-
lytics platforms can easily access and deconstruct [8]. More re-
cently, the Critical Care Data Exchange Format (CCDEF) was de-
veloped to facilitate encoding, storing, and exchanging clinical 
and physiologic data across institutions globally [9]. CCDEF gen-
erates a diverse and well-represented dataset that is ideal for de-
veloping robust ML algorithms. 
  Once data has been gathered, optimizing the dataset through 
preprocessing is necessary before being employed in an ML mod-
el. Preprocessing can involve data cleaning, normalization, fea-
ture extraction, and selection to address issues with erroneous, 
missing, or imprecise data. Proper data preprocessing requires 
tremendous resources and time due to considerable size of data-
sets containing physiological and imaging data and directly influ-
ences the performance of the ML algorithm [10,11]. Nonetheless, 
the omission of preprocessing in ML studies appears common and 
impairs a fair assessment of the model. Even with proper prepro-
cessing, features that may be difficult to capture in data, such as 
heart rate variability and interhospital differences in ICU resourc-
es, can still confound the model performance [12,13]. 

Fig. 1. Challenges in adopting machine learning (ML).
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FEATURIZATION AND MODEL SELECTION 

Featurization involves converting raw variables into numerical 
vectors that ML algorithms can process. Feature selection and 
extraction are important steps to identify clinically salient fea-
tures and improve model predictability [14,15]. Therefore, fea-
tures need to reflect underlying pathophysiologic mechanisms or 
core characteristics of data structure. For feature extraction, one 
needs to understand inherent biases in feature extraction (mea-
surement error, self-reporting, human judgment) which can lead 
to the problem of fairness in ML. When choosing the models, they 
need to be built on the same well-understood variables to fairly 
compare their performance. Likewise, careful contextual consid-
eration needs to be given when choosing the ML model. Another 
potential problem is using various ML models without consider-
ation of data structure and study objectives, including simultane-
ous use of supervised and unsupervised learning just to see better 
performance for publication. 

EVALUATION OF ML MODELS	

Once the features are decided, models learn from the selected 
features within the different hyperparameter settings to predict 
desired outcomes. Choosing the best model requires calibration, 
which estimates concordance between the predicted probabilities 
and observed outcomes. Model calibration is a necessary step for 
measuring the relative performance of models and can assess 
underfitting or overfitting [16]. To evaluate fair model selection, 
future studies should use appropriate methods of model calibra-
tion, accounting for population size and the type of model [17]. 
Finally, the evaluation of a model’s predictive performance should 
assess its clinical applicability. Most of the existing studies have 
used the area under the receiver operating characteristics (AU-
ROC) curve to evaluate model performance. The AUROC curve is 
plotted by calculating sensitivity and specificity at different thresh-
olds. An AUROC curve provides a single performance value that is 
easy to interpret and compare [18]. Because the AUROC curve 
accounts for the true positive rate and the false positive rate, it is 
useful in a balanced dataset that values both positive and nega-
tive outcomes equally. The existing ML studies use the AUROC 
curve indiscriminately. However, the datasets used to build ML 
models in medicine tend to have smaller positive classes com-
pared to negative classes. In such imbalanced datasets, the area 
under the precision recall curve (AUPRC) is more appropriate. The 
AUPRC represents positive predictive values for each true positive 
rate and thus focuses on positive values and is not influenced by 
true negatives [19]. Therefore, the use of AUPRC to evaluate mod-

els used for problems such as diagnosis, screening, and predicting 
mortality will lead to better estimation of the models’ performance 
in real clinical settings.

MODEL VALIDATION 

Although ML models are being rapidly developed for potential 
use in critical care medicine, their clinical utility is still unclear 
with a lack of generalizability. Small datasets, especially those 
produced from a single institution could lead to overfitting in a 
similar environment, but often not performing in other datasets. 
To properly implement ML algorithms in the clinical workflow of 
the ICU or ED, the algorithms must be externally validated. How-
ever, a recent study assessing the clinical readiness of existing ML 
models revealed that only 5% of the models have been externally 
validated [20]. Ongoing data-standardization initiatives, such as 
CCDEF, will hopefully integrate large datasets across multiple cen-
ters, which in turn can be employed for model validation. Further, 
successful model performance on prospectively collected data can 
demonstrate the value of ML support in clinical settings and as-
sure clinicians of its safety.
  Lack of external validation and small datasets can lead to over-
fitting and reduce generalizability. While curating multicenter 
databases in a centralized center can resolve such issues, it in-
vites other challenges, especially in international configurations 
due to concerns over privacy, technical process, and data owner-
ship. Federated learning (FL) provides a more efficient solution by 
allowing multiple collaborators to train models in parallel and 
send the updates to a central server to be integrated into a con-
sensus model [21]. Recently, 20 centers across the globe collabo-
rated to build a comprehensive FL model for predicting outcomes 
from COVID-19 infection [22]. Trained on electronic medical re-
cords and chest x-ray images, the FL model performed 16% bet-
ter than a locally-trained model in predicting 24-hour oxygen 
treatment, with improved generalizability of 25.3%. As above, 
data sharing in a federated environment could overcome the lim-
itation of external validation where data governance and privacy 
become obstacles. 

MODEL IMPLEMENTATION 

Despite a great deal of evolution in ML, several challenges still 
remain before their deployment. When the models are deployed 
at the bedside to alert physicians of impending crises, for exam-
ple, their overt sensitivity can cause unintended harm. Excessive 
alarms that do not require clinicians’ immediate awareness can 
lead to missed real events. The ML-based alerting tools should be 
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designed in a judicious manner to maximize the accuracy of the 
alarms. 
  Although not required, model interpretability could have a par-
amount impact on successful implementation. To implement a 
model in a clinical setting, its decisions must be verified by clini-
cians before use. An earlier study tested ML algorithms to build a 
model that could triage patients with pneumonia and predict mor-
tality. Among the algorithms evaluated in the study, multitask neu-
ral networks were deemed to be the most accurate [23]. However, 
later analysis revealed a pattern in the algorithm that linked asth-
ma to lower mortality—explained by the fact that patients with 
asthma received more attentive care and close monitoring, thus 
leading to better outcomes. 
  Since the study was published, efforts have been made to im-
prove the interpretability of ML models. Prescience, a complex 
ML algorithm, accurately predicts the near-term risk of hypox-
emia during surgery and displays the specific risk factors that in-
formed its prediction [24]. The model is built using a gradient 
boosting machine based on both static features—such as body 
mass index, age, and sex—and dynamic parametric values, such 
as tidal volume and vital signs. The impact of each feature is as-
signed Sharply values, which makes the predictions more inter-
pretable through the concept used in the game theory. 
  The successful implementation of ML models relies on clini-
cians’ confidence in the models, which depends on how well us-
ers can explain the models’ decision-making process [25]. For an 
ML model to play a supportive role to physicians, it is paramount 
to focus on features that are available real time and actionable in 
clinical settings. Therefore, researchers and developers should in-
volve clinicians in an early phase of design to facilitate smooth 
integration into clinical workflow [26,27]. 
  As seen from the above examples, the ML model implementa-
tion in ICU or ED population still could be far-fetched from the 
practice pattern of clinicians. To address that aspect from the end-
user standpoint, the US Food and Drug Administration (FDA) un-
der the Department of Health and Human Services has published 
an action plan for the use of artificial intelligence and ML, specif-
ically in the form of “Software as a Medical Device (SaMD).” In 
the white paper, the FDA argued the need for the “Predetermined 
Change Control Plan” to assure the quality of usable ML models 
for patient care [28]. Similar efforts could be seen in the Bridge2AI, 
a US National Institutes of Health funding initiative to promote 
the ML modeling environment at a multicenter level [29]. Filling 
the gap between the developer’s machine to the real world re-
mains to be a huge challenge for healthcare researchers. 
  Lastly, For the ML model to be successfully implemented at the 
bedside and performed in the realm of current clinical practice, 

not only the ML researchers but also clinicians (end-users) need 
to understand the ethical aspects of adopting it. First, all data 
and system-related biases should be minimized with vigilance. 
Bias could include a thorough examination of the environment 
where the model was initially developed, identification of inade-
quate perpetuation of systematic errors abundant in different 
types of healthcare practices, and so on [30]. Secondly, both re-
searchers and clinicians need to recognize that patients and col-
leagues might not accept or adhere to the results of the ML mod-
el. In a survey, around 60% of Americans feel uncomfortable us-
ing artificial intelligence-driven healthcare and are also suspicious 
that the ML model could improve their outcomes [31]. More stud-
ies are required to understand the underlying characteristics of 
barriers to accepting ML in practice. Thirdly, clinicians still should 
strive for excellence in patient care in their traditional ways. This 
due diligence is mainly to avoid the moral hazards smoldering 
when high-performing ML models become functional at the bed-
side. 

CONCLUSION

Research in the application of ML to critical care or emergency 
medicine has seen tremendous growth owing to the increasing 
availability of highly granular, large critical care databases. Nev-
ertheless, for the ML-based models to serve as reliable decision 
support tools, the steps involved in model building to final imple-
mentation must be carefully examined. As the validity of the mod-
els is entirely dependent on the datasets, standardization of the 
data-gathering process and proper preprocessing of the datasets 
are imperative. A large portion of published studies lack a descrip-
tion of the preprocessing and featurization bringing into question 
the clinical saliency of the features involved in model performance. 
Moreover, selecting the right model should involve model calibra-
tion to objectively compare the accuracy of the model prediction. 
Even after choosing the well-calibrated model, many of the earli-
er studies failed to have the models externally validated which 
may result in the models overfitting the testing dataset reducing 
generalizability. In addition, the decision-making process of the 
algorithms should be explainable. Lastly, the endeavor to create a 
sustainable and scalable ecosystem should be pursued across dif-
ferent healthcare systems where ethical datasets could be col-
lected and shared for fair ML research. 
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