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Artificial intelligence (AI) and machine learning (ML) have potential to revolutionize emergency 
medical care by enhancing triage systems, improving diagnostic accuracy, refining prognostica-
tion, and optimizing various aspects of clinical care. However, as clinicians often lack AI exper-
tise, they might perceive AI as a “black box,” leading to trust issues. To address this, “explainable 
AI,” which teaches AI functionalities to end-users, is important. This review presents the defini-
tions, importance, and role of explainable AI, as well as potential challenges in emergency medi-
cine. First, we introduce the terms explainability, interpretability, and transparency of AI models. 
These terms sound similar but have different roles in discussion of AI. Second, we indicate that 
explainable AI is required in clinical settings for reasons of justification, control, improvement, 
and discovery and provide examples. Third, we describe three major categories of explainability: 
pre-modeling explainability, interpretable models, and post-modeling explainability and present 
examples (especially for post-modeling explainability), such as visualization, simplification, text 
justification, and feature relevance. Last, we show the challenges of implementing AI and ML 
models in clinical settings and highlight the importance of collaboration between clinicians, de-
velopers, and researchers. This paper summarizes the concept of “explainable AI” for emergency 
medicine clinicians. This review may help clinicians understand explainable AI in emergency con-
texts.
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What is already known
Artificial intelligence (AI) and machine learning have potential to revolutionize 
emergency medical care, enhance triage, diagnosis, prognostication, and many 
aspects of clinical care. However, as clinicians often lack AI expertise, they 
might perceive AI as a “black box”, leading to trust issues. To address this, “ex-
plainable AI”, which makes AI functionalities comprehensible to end-users, is 
important. This review introduces the definitions, importance, and role of ex-
plainable AI, and potential challenges in emergency medicine.

What is new in the current study
This paper summarizes the concept of “explainable AI” for emergency medicine 
clinicians. This review may help clinicians understand explainable AI in emer-
gency contexts.

http://crossmark.crossref.org/dialog/?doi=10.15441/ceem.23.145&domain=pdf&date_stamp=2023-12-31
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INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are powerful 
technologies that have the potential to improve medical care [1]. 
AI refers to the broader concept of technology being able to carry 
out tasks in an autonomous and smart way, encompassing a vari-
ety of technologies, while ML is a subset of AI focused on the idea 
that machines can learn from data, identify patterns, and make 
decisions with minimal human intervention [1–4]. Particularly in 
emergency medicine, AI and ML are expected to play critical roles 
in accelerating triage, diagnosis, and prognostication to optimize 
individual patient care through the input of clinical information 
and/or image recognition [2,4–8]. Furthermore, streamlined clini-
cal documentation or recording using natural language process-
ing is expected to make these tasks more efficient [9–11]. These 
technologies will also contribute to drug discovery, patient moni-
toring, resource allocation, and epidemiological surveillance [12–
15]. 
 Despite expectations that emergency physicians will become 
general users of AI and ML in the near future, critics are doubtful 
whether they can trust and rely on AI and ML models [16]. Physi-
cians are usually not experts in AI and may not have an in-depth 
understanding of it or ML. When an AI model outputs a medical 
classification or prediction, without necessarily “explaining” the 
underlying process or showing the variables and weights driving 
the prediction, physicians who are not familiar with AI algorithms 
may perceive an AI model as a “black box.” Such a situation may 
lead to doubt and mistrust in AI output, a major challenges for 

implementation of AI and ML tools in clinical settings [17].
 To address these concerns, the concept of “explainable AI” has 
been highlighted as a possible solution for successful implemen-
tation of AI and ML in medical practice [18–20]. Explainable AI 
aims to teach the functioning of AI systems to end-users, research-
ers, or developers [18–20]. As more accurate, complex models are 
developed, it may become increasingly difficult to understand how 
they work. This review introduces the definitions, importance, and 
role of explainable AI and covers potential related challenges in 
emergency medicine. 

WHAT IS TRANSPARENCY, INTERPRETABILITY, 
AND EXPLAINABILITY IN AI? 

Before discussing the concept of “explainability,” we introduce 
the terms “interpretability” and “transparency” [18–20]. While 
these terms have distinct meanings, they are sometimes mistaken 
for explainability. AI models are often labeled as a “black box,” sug-
gesting a lack of transparency, as shown in Fig. 1A [21]. In an opa-
que model, the conversion of an input to an output is invisible, 
making it challenging for users to understand the process. In con-
trast, transparent/interpretable models allow users to understand 
how inputs are processed to produce outputs to observe opera-
tion of a model, as shown in Fig. 1B. As shown in Fig. 2, straight-
forward models like linear regression with a limited number of 
variables or a decision tree with a few branches are easier to un-
derstand [21]. 
 Explainability is different conceptually. Arrieta et al. [19] sug-
gested that, “Given a certain audience, explainability refers to the 
ability of a model to show details and make its internal function-
ing clear or easy to understand.” This definition emphasizes the 
audience’s perspective, which can vary by background, experienc-
es, and capacities, resulting in different needs of explainability in 
ML. While explainability is inherent in transparent models, it is 
also tied to post hoc explainability, as shown in Fig. 1C. This con-
cept refers to techniques that provide a rationale or explanation 

Fig. 1. Black box, transparency, and post hoc explainability. (A) Black-
box model. (B) Transparent model. (C) Post hoc explainability. VF, ven-
tricular fibrillation; CPR, cardiopulmonary resuscitation.
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Fig. 2. Decision tree model to predict the possibility of survival. You can 
trace the algorithm to generate the output without any computers or 
devices. VF, ventricular fibrillation.
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to support user understanding of model operation even if the model 
itself is noninterpretable (often referred to as a “black box”); this 
may be achieved by providing text or a visual explanation, etc. [22]. 

WHY IS EXPLAINABLE AI NEEDED IN  
EMERGENCY MEDICINE?

There are four main reasons why explainable AI is required in clini-
cal settings: justification, control, improvement, and discovery of 
novel ideas [23]. These four reasons may appear to overlap, but 
from a clinical perspective, they capture different motivations. 
 First, explainable AI is useful to justify AI model outputs, to 
enhance trust, and to support clinical decision-making [23]. Gen-
erally, clinicians need to explain a medical condition, treatment 
plan, and expected outcomes to patients and their families. De-
spite medical complexity, clinicians need to make the effort to 
communicate to the patients and their families to facilitate shared 
decision-making and trust [24]. Thus, explainability is important 
in a medical decision-making process, and the results generated 
from clinical AI or ML need to be handled appropriately to build 
trust. In the absence of a clear and satisfactory explanation, clini-
cians will likely be hesitant to trust AI. For example, a recent ran-
domized control trial investigated the efficacy of an AI model that 
aims to detect cardiac arrest cases at the dispatch center using 
voice data analysis during an emergency call [25,26]. The study 
was unable to demonstrate the effectiveness of the AI model, with 
the researchers suggesting that some dispatchers might not have 
trusted the output from the AI model due to the absence of a rea-
sonable explanation. Explainable AI can produce an auditable and 
testable way to defend algorithmic decisions as fair and ethical 
[27,28].
 Second, explainability helps users maintain control of a com-
plex technology. Indeed, a deeper understanding of AI models in-
creases awareness of vulnerabilities and flaws [23], which can 
help to quickly identify and correct (debug) errors in critical situ-
ations. Thus, user controls can be strengthened. If the AI gener-
ates unexpected results and unreasonable explanations inconsis-
tent with clinical experience or show potential risk of bias/dis-
crimination, clinicians can bypass the AI and review results for 
errors or bias [29]. For example, if a patient is unexpectedly eval-
uated as having low likelihood of a favorable outcome, mainly 
driven by ethnicity or socioeconomic status of the patient, clini-
cians may suspect hidden discrimination or bias in the AI training 
data [30,31].
 Third, explainability of AI models is needed to allow continual 
improvement. If AI models can discuss the process used to pro-
duce specific results, the information can be used for further im-

provements [32]. For example, when an AI model does not accu-
rately predict an outcome, its process can be determined using 
explainability features. If a certain predictor highly contributes to 
a model but carries a risk of measurement bias due to the absence 
of standardized definitions in clinical settings, the model might 
be improved by excluding the variable or standardizing the input. 
In this way, explainable AI can lay the groundwork for continuous 
iteration and improvement.
 Furthermore, explainable AI may allow development of new 
ideas, hypotheses, and knowledge [22]. For example, if an expla-
nation from an AI model shows an unexpected contribution of a 
certain risk factor to the prediction of outcomes, a novel hypoth-
esis might be developed regarding this factor and its association 
with outcomes. In an AI study investigating clinical subgroups of 
cardiac arrest patients treated effectively with extracorporeal car-
diopulmonary resuscitation (ECPR), creatinine value was associ-
ated with outcome. This led to the development of a novel score 
for indications of ECPR that included creatinine [33]. The impor-
tance of explainable AI is increasing with the more critical role of 
AI in clinical settings.

HOW DOES EXPLAINABLE AI WORK?

Explainable AI encompasses three main approaches [18–20]. The 
first is pre-modeling explainability, such as data visualization, sum-
marization, and transformation [34]. Before deploying AI in clini-
cal settings, it is essential to grasp the data structure, patients’ 
characteristics, time trends, and proportion of the outcome for an 
appropriate understanding of the AI. This may include simple de-
scriptions, such as mean, standard deviation, and range, and miss-
ing data using data visualization or summarization. Data trans-
formation is also crucial to change row data into a usable format 
or structure [34]. For example, when developing ML models, clini-
cal data such as the date of incidence, time of emergency call, and 
hospital arrival are generally transformed to the month or day of 
an incident or the duration between the emergency call and the 
time of hospital arrival, allowing easier analysis. Data transforma-
tion is more applicable to development and understanding of models.
 The second approach is to develop an interpretable model with 
inherent understandability or a blend of different model types [18–
20]. Models exhibit various levels of interpretability and transpar-
ency: at the level of the training algorithm (referred to as “algo-
rithmic transparency”), at the component level (known as “de-
composability”), and at the level of the model itself (or “simulat-
ability”) [22]. For example, as shown in Fig. 2, a tree model might 
pose a human-understandable question, such as whether the pa-
tient is younger than 65 years to clarify the prediction process 
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and enhance algorithmic transparency. Such a model can be bro-
ken down into individual segments, like patients with or without 
initial ventricular fibrillation (VF) (Fig. 2). This allows users to iden-
tify the contribution of each segment to the overall output, show-
casing decomposability. In an example of a 40-year-old cardiac 
arrest patient with initial VF, we can follow the entire prediction 
pathway of the model, estimating a survival probability of 30%, 
without specialized mathematical tools. This demonstrates simu-
latability, with model transparency and user-friendly interpreta-
tion. 
 A hybrid interpretable model approach has also been proposed 
[18–20]. It includes a set of methods that attempts to combine a 
complex black-box model with an inherently interpretable model 
to build an interpretable model that achieves comparable perfor-
mance to the black-box model. The AutoScore framework is an 
example of this hybrid interpretable model approach [35,36]. In 
this framework, development of an ML model is complicated, but 
the final result is familiar to users [5,35,37].
 The last method is called post-modeling explainability [18]. It 
helps break down complex developed AI models so that they are 
easier to understand. These techniques were created based on hu-
man understanding. 

POST-MODELING EXPLAINABILITY 

In this section, we introduce some examples of post-modeling 
explainability. Fig. 3 shows several categories of post-modeling 
explainability, including visualization, textual justification, simpli-
fication, and feature relevance [22].
 Text explanations improve the understanding of ML models by 
generating text-based explanations in the form of phrases or sen-
tences using natural language generation methods. Examples in-

clude AI models used to classify pathological images, which at-
tempt to provide user-friendly explanations [38]. These models 
can generate sentences such as: “The input image is diagnosed as 
tissue A type for sure because it could not be misclassified to any 
other tissue types”; “The input image is suspected as tissue B type, 
and there is a low possibility that it could be tissue C type, D type, 
or E type”; or “The input image is tissue A type. However, there is 
a possibility that it could be tissue F type.” These explanations 
about the possibilities of misclassification provide rationale for 
predictions and help clinicians with their decision-making (Fig. 3).
 Visual explanations describe models by applying techniques 
that aim to visualize the model behavior. Popular literature makes 
use of dimensionality reduction techniques to produce simple vi-
sualizations that can be easily interpreted by humans. Visual ex-
planation is particularly effective in conveying complex interac-
tions between variables [18–20]. For instance, when describing 
black-box models to predict the probability of favorable outcomes 
for cardiac arrest patients, the interactions between probability 
and some factors (such as age and transport time to the hospital) 
are difficult to recognize. In explainable AI, these variables can be 

Fig. 3. Methods of post-explainability. VF, ventricular fibrillation; ROSC, 
return of spontaneous circulation.

Fig. 4. Visualization of interactions between factors and outputs. This 
plot illustrates the relationships between the factors (age and time to 
hospital) and the predictions of the random forest machine-learning 
model. This random forest model was constructed to predict the survival 
probability using simulated data from cardiac arrest patients, including 
patient age and gender, whether the event was witnessed, provision of 
bystander cardiopulmonary resuscitation, and the time from the call to 
arrival at a hospital. The x-axis represents age, while the y-axis denotes 
the time from the call to arrival at a hospital. Blue dots indicate cases 
with a low probability of survival (<25%), red dots are cases with a high 
likelihood of survival (>35%), and white dots signify intermediate cases 
(around 30%). While users might not grasp the intricacies of artificial 
intelligence model prediction, they can broadly infer that patients who 
are younger and have a shorter time to reach a hospital are predicted to 
have higher survival rates. Conversely, older patients with a longer time 
to reach a hospital are estimated to have lower survival probability. 
Moreover, users can observe the interactions between factors and pre-
dictions.
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plotted along the x-axis and y-axis, respectively, to create a scat-
ter plot (Fig. 4) of the distribution of the possibilities [39]. This 
approach visualizes the predicted probability of interaction be-
tween the factors.
 Simplification creates a straightforward, less complicated in-
terpretable model from a black-box model [22]. One example of 
simplification is selection of a single decision tree as the repre-

sentative of a random forest ensemble of numerous decision tree 
models [40,41]. A simplified model could aggregate predictions 
from the individual trees to produce a final output, as shown in 
Fig. 3 [42]. Although this approach is commonly utilized in medi-
cal research, the results can be challenging to interpret due to 
the ensemble nature. Identifying a single tree that captures the 
primary patterns and behaviors of the entire forest allows a bal-

Fig. 5. Example of Shapley Additive Explanations (SHAP) values. (A) The waterfall plot indicates the predicted value (i.e., f(X)) of each factor for a 45-year-
old female who suffered cardiac arrest with witnesses and time to the hospital of 37 minutes. The change in predicted value from baseline (–1.495, cor-
responding to a survival rate of 18.3%) to that for this particular case (–1.293, corresponding to a survival rate of 21.5%) attributed to each factor is the 
SHAP value of each factor. The survival probability is calculated as the inverse logit function given by [1/(1+e(–f(X)))]. (B) The beeswarm plot demonstrates 
the SHAP values of each factor across all cases. A central vertical line (at SHAP value=0) indicates “no influence” on the prediction. If a point is to the 
right of this line, it means that the factor influences the model predictions in a positive direction (increases the survival rate); if it is to the left, it influ-
ences predictions in a negative direction (decreases the survival rate). The color of the dot represents the value of the factor. For example, red and blue 
correspond to female or male for sex and “witnessed” and “not witnessed” for witness status. Also, red or blue means older or younger in age. (C) The bar 
plot displays the absolute SHAP values, indicating that factors of time to hospital, witnessed status, and age are more relevant predictors of survival 
than age across all cases.
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ance between interpretability and performance [40,41]. This rep-
resentative tree can be visualized, providing insights into the de-
cision-making process using the same foundational logic as the 
original ensemble. Another example is the local interpretable mod-
el-agnostic explanations (LIME) approach [43], which approxi-
mates a complex black-box model with a simpler and more easily 
interpretable linear regression model. This is achieved by generat-
ing numerous samples of input data, predicting their outputs us-
ing the original model, and then training a linear model on these 
samples with emphasis on those close to the original data point. 
LIME can identify the feature importance that contributes most 
to each prediction and helps users determine the factors most 
crucial in the, as explained below. 
 Explanation by feature relevance aims to provide post-model-
ing explainability by assessing the internal processes of an algo-
rithm. This type of explanation is commonly utilized in ML models 
in emergency medicine [33,44–47]. It calculates relevance scores 
for all variables managed by the algorithm to quantify the impor-
tance of features critical to model decisions. Shapley Additive Ex-
planations (SHAP) is one of the methods used to evaluate the 
contribution of each input feature to AI model operation [48,49]. 
Similar to LIME, SHAP performs local linear approximations to 
explain the predicted risk for each individual. However, it uses a 
different approach that allows more desirable properties than LIME 
in terms of local accuracy and consistency (for details, please see 
the reference) [49]. 
 SHAP can quantify and visualize how each factor increases or 
decreases risk from baseline to reach the predicted risk for each 
individual using a waterfall plot, as shown in Fig. 5. Consider an 
ML model that predicts the survival rate of cardiac arrest patients 
using sex, age, witness status (yes/no), and time to the hospital 
from the emergency call (minutes). For example, consider a 45-year-
old female with witnessed arrest and a time to hospital of 37 min-
utes. This ML model predicts her survival rate as 21.5%. The wa-
terfall plot in Fig. 5A demonstrates how these four factors influ-
ence the prediction of ML. In this case, the baseline of the pre-
dicted value (f(X)), i.e., the average prediction across all cases, is 
–1.495, which translates to a baseline survival rate of 18.3% via 
the inverse logit function [1/(1+e(–f(X)))]. The witnessed status in-
creases the predicted value by 0.103, which is equivalent to an 
increase in the survival probability to 19.9% from baseline. This 
0.103 increase in the predicted value attributable to the wit-
nessed status is the SHAP value of this factor for this individual. 
The patient’s sex (female) has a SHAP value of 0.147, which fur-
ther increases the survival probability to 22.4%. Additionally, the 
patient’s age (45 years old) has a SHAP value of 0.22, which in-
creases it further to 26.4%. However, the time taken to reach a 

hospital, which has a negative SHAP value of –0.268, reduces the 
survival rate to the final predicted value of 21.5% for this partic-
ular case. Through this example, we can understand how each 
variable impacts the model prediction using a waterfall plot and 
SHAP values. This demonstrates how SHAP can provide local ex-
planations for individual predictions. When the contributions to 
the predicted risk of each factor are visualized across all patients 
in a beeswarm plot (Fig. 5B), the relationships between factor 
levels and contributions to prediction can be determined, facili-
tating a straightforward comparison of the impact of each factor 
on the prediction.
 SHAP is also valuable for global explanations to understand 
how the model behaves overall. This is done by considering all 
data points using the average absolute SHAP value. For example, 
the bar plot in Fig. 5C indicates that the average absolute SHAP 
value of “time to hospital” is highest, while those of “witnessed” 
and “age” are lower but still considerably high compared to that 
of “sex.” The model suggests time to hospital, witnessed status, 
and age as strong predictors of survival. This dual capability al-
lows users to understand both specific decisions of the model and 
the broader trends and behaviors across data points. 

CHALLENGES IN IMPLEMENTATION INTO 
CLINICAL SETTINGS 

Even though the explainability of AI has advanced, there remain 
several challenges to the implementation of AI models in clinical 
settings. One of the issues is whether the explanation is accept-
able and trustworthy enough from the points of view of clinicians 
and patients [16,18–20]. Previously, an explainable AI model was 
developed to predict the deterioration of patients with subarach-
noid hemorrhage in the intensive care unit. To enhance the im-
plementation of the AI tool, the perception gap between the de-
velopers and clinicians was investigated [50]. Through interviews, 
the study found that the developers believed that clinicians must 
be able to understand model operation and developed the AI mod-
el with explainability by providing SHAP values, as mentioned above. 
In contrast, from the perspectives of the clinicians, the SHAP val-
ue was not sufficiently helpful in understanding or trusting the AI 
model. Clinicians were more focused on clinical plausibility based 
on the pathophysiological rationale or clinical experience and a 
holistic approach referring to the multispectral clinical informa-
tion. As illustrated in this example, the kind of explainability re-
quired depends on the audience and context of use of the AI model 
[19]. In emergency settings, the contexts and patient conditions 
change rapidly. Especially during resuscitation, which is an in-
credibly time-critical situation, clinicians may not have adequate 



360 www.ceemjournal.org 

Explainable AI in emergency medicine

time to try to understand how AI models work. Therefore, a model 
must be understandable quickly. Furthermore, it is a challenge to 
assess the quality/effectiveness of explainability. A previous sys-
tematic review reported various methods for assessing explain-
able AI effectiveness, with few established methods [51]. Estab-
lishing standardized approaches to measure the effectiveness of 
explainable AI might increase its integration into clinical settings 
and act as a tool of communication among clinicians, research-
ers, and developers [28]. Finally, with increasing emphasis on fair 
and trustworthy AI-assisted decision-making in clinical settings, 
the contribution of explainable AI to model development should 
be determined through a multidisciplinary approach [52]. Consid-
ering such situations, collaboration among AI developers, research-
ers, and clinicians in designing explainable AI systems is impera-
tive for improving their effectiveness, usability, and reliability in 
healthcare.

CONCLUSION

This paper summarizes the concept of “explainable AI” for clini-
cians in emergency medicine. With the expected increasing role 
of AI in medicine, emergency physicians and researchers will need 
to become knowledgeable about its use. Furthermore, a multidis-
ciplinary approach is essential to develop trustworthy AI for use 
in clinical emergency medicine. This review will help interpret ex-
plainable AI to clinicians working in emergency departments.
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