Predicting 30-day mortality of patients with pneumonia in an emergency department setting using machine-learning models
Soo Yeon Kang, Won Chul Cha, Junsang Yoo, Taerim Kim, Joo Hyun Park, Hee Yoon, Sung Yeon Hwang, Min Seob Sim, Ik Joon Jo, Tae Gun Shin
Clin Exp Emerg Med. 2020;7(3):197-205.   Published online 2020 Sep 30     DOI: https://doi.org/10.15441/ceem.19.052
Citations to this article as recorded by Crossref logo
Machine-Learning Model for Mortality Prediction in Patients With Community-Acquired Pneumonia
Catia Cilloniz, Logan Ward, Mads Lause Mogensen, Juan M. Pericàs, Raúl Méndez, Albert Gabarrús, Miquel Ferrer, Carolina Garcia-Vidal, Rosario Menendez, Antoni Torres
Chest.2023; 163(1): 77.     CrossRef
Haemogram indices are as reliable as CURB-65 to assess 30-day mortality in Covid-19 pneumonia
OKAN BARDAKCI, MURAT DAS, GÖKHAN AKDUR, CANAN AKMAN, DUYGU SIDDIKOGLU, OKHAN AKDUR, YAVUZ BEYAZIT
The National Medical Journal of India.2023; 35: 221.     CrossRef
Performance of Machine Learning Algorithms for Predicting Adverse Outcomes in Community-Acquired Pneumonia
Zhixiao Xu, Kun Guo, Weiwei Chu, Jingwen Lou, Chengshui Chen
Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
Pneumonia Update for Emergency Clinicians
Boris Garber
Current Emergency and Hospital Medicine Reports.2022; 10(3): 36.     CrossRef
Benchmarking emergency department prediction models with machine learning and public electronic health records
Feng Xie, Jun Zhou, Jin Wee Lee, Mingrui Tan, Siqi Li, Logasan S/O Rajnthern, Marcel Lucas Chee, Bibhas Chakraborty, An-Kwok Ian Wong, Alon Dagan, Marcus Eng Hock Ong, Fei Gao, Nan Liu
Scientific Data.2022;[Epub]     CrossRef
Incorporation of Suppression of Tumorigenicity 2 into Random Survival Forests for Enhancing Prediction of Short-Term Prognosis in Community-ACQUIRED Pneumonia
Teng Zhang, Yifeng Zeng, Runpei Lin, Mingshan Xue, Mingtao Liu, Yusi Li, Yingjie Zhen, Ning Li, Wenhan Cao, Sixiao Wu, Huiqing Zhu, Qi Zhao, Baoqing Sun
Journal of Clinical Medicine.2022; 11(20): 6015.     CrossRef
Machine Learning Model Development and Validation for Predicting Outcome in Stage 4 Solid Cancer Patients with Septic Shock Visiting the Emergency Department: A Multi-Center, Prospective Cohort Study
Byuk Sung Ko, Sanghoon Jeon, Donghee Son, Sung-Hyuk Choi, Tae Gun Shin, You Hwan Jo, Seung Mok Ryoo, Youn-Jung Kim, Yoo Seok Park, Woon Yong Kwon, Gil Joon Suh, Tae Ho Lim, Won Young Kim
Journal of Clinical Medicine.2022; 11(23): 7231.     CrossRef
Predicting ventilator-associated pneumonia with machine learning
Christine Giang, Jacob Calvert, Keyvan Rahmani, Gina Barnes, Anna Siefkas, Abigail Green-Saxena, Jana Hoffman, Qingqing Mao, Ritankar Das
Medicine.2021; 100(23): e26246.     CrossRef
Calibration-Free Cuffless Blood Pressure Estimation Based on a Population With a Diverse Range of Age and Blood Pressure
Syunsuke Yamanaka, Koji Morikawa, Hiroshi Morita, Ji Young Huh, Osamu Yamamura
Frontiers in Medical Technology.2021;[Epub]     CrossRef
Evaluation and management of pleural sepsis
Justin K. Lui, Ehab Billatos, Frank Schembri
Respiratory Medicine.2021; 187: 106553.     CrossRef
Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department
You‐Ming Chen, Yuan Kao, Chien‐Chin Hsu, Chia‐Jung Chen, Yu‐Shan Ma, Yu‐Ting Shen, Tzu‐Lan Liu, Shu‐Lien Hsu, Hung‐Jung Lin, Jhi‐Joung Wang, Chien‐Cheng Huang, Chung‐Feng Liu
Academic Emergency Medicine.2021; 28(11): 1277.     CrossRef